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Samarium-mediated 7-endo-trig radical cyclization af-
forded excellent stereocontrol of the four contiguous asym-
metric centers present in the 6-7-6 tricyclic cores of the
(sugar-fused) erinacines E, F, and G.

The erinacines were isolated by Kawagishi from myceria of
the fungus Hericium erinaceum, as potent stimulators of nerve
growth factor (NGF) synthesis.! Erinacines E 1, F 2, and G
32 share carbocyclic E-rings that are not seen in other cyathan
diterpenes,® thus constituting a unique subgroup among the eri-
nacine family (Fig. 1). These E-rings are probably biosynthesized
by fusion of a sugar unit with a diterpenoid aglycon (cyathan
skeleton). In 1998, Saito et al. investigated erinacine E 1 from
the fermentation broth of a basidiomycete (Hericium ramosum
CL24240), and that it had k-opioid receptor agonist activity.*
Despite their intriguing structure and biological activities, no
synthetic studies have focused on the substructural family
containing erinacines E, F, and G.>¢ We report here the efficient
construction of the common 6-7-6 tricyclic core 4. A notable
challenge in this synthesis was the construction of the central

Erinacine G (3)

Fig. 1 Sugar-fused erinacines.
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7-membered ring, which possesses four contiguous asymmetric
centers.

Our synthetic plan is outlined in Scheme 1. Disconnection at
the C13-C14 bond of 4 gives the ald-enone 5, a key precursor in
our study. We chose samarium-mediated radical cyclization for
this transformation.”® Only a few examples of 7-endo-trig radical
cyclization have been reported,” but we predicted that its mild
reaction conditions would be suitable for polyfunctionalized
target molecules.

Our synthesis commenced with chemoselective reduction of 6
(96% ee) (Scheme 2).! Swern oxidation of the resulting primary
alcohol gave an aldehyde with a syn relative configuration. Treat-
ment of the syn-aldehyde with DBU afforded an equilibrium
mixture of aldehydes (syn : anti = 1 : 1). The desired anti-
isomer 7 was isolated, and the recovered syn-isomer was treated
again. After two cycles of these processes, 7 was obtained in 70%
yield. The anti-isomer 7 was then converted into homologated
aldehyde 8 by a Wittig reaction and hydrolysis of the resulting
enol ether without any epimerization at C-5. The installation of
2-cyclohexen-1-one with the Morita—Baylis—Hillman reaction™
proved to be more difficult than anticipated. Numerous reaction
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Scheme 2 Reagents and conditions: a) 1) i-BuOCOCI, Et;N, Et,0; ii)
NaBH,, THF, 87% (2 steps); b) (COCl),, DMSO; Et;N, CH,Cl,, 90%;
c¢) DBU, MeOH; d) separation of isomers, 70% of 7 after 2 cycles; e)
t-BuOK, MeOCH,PPh;Cl, toluene, 68%; f) TFA, THF-H,O (1 : 1),
94%; g) 2-cyclohexen-1-one, DBU, Et,0-MeOH (9 : 1), 47% for 9a and
47% for 9b; h) TBSOTT, 2,6-lutidine, CH,Cl,, 78% from 9a and 82%
from 9b; i) DIBAL, toluene; j) TPAP, NMO, 4 A MS, CH,CL,, 66% for
5a and 81% for 5b.

Scheme 1 Synthetic plan.
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systems were surveyed, and finally, aldehyde 8 and 2-cyclohexen-
1-one were treated with DBU in Et,O0-MeOH, and the desired
product 9 was obtained in 94% yield. The use of MeOH as a
co-solvent was found to be essential, with 9 being obtained in
poor yield (<30%) in the absence of MeOH. Diastereomeric
secondary alcohols 9a and 9b'? were protected as their zert-
butyldimethylsilyl ethers. Reduction of the tert-butyl ester and
the enone moiety, followed by oxidation of the resulting diol
with TPAP, gave ald-enones 5a and 5b, respectively.

With the key precursor 5 in hand, we attempted the samarium-
mediated radical cyclization. With ald-enone 5b as a starting
material, the cyclization reaction proceeded smoothly to give
4 in 86% yield as a single diasterecomer. Structural assignment
of cycloadduct 4 was initially obtained through '"H-NMR, "C-
NMR, COSY, HMBC, and HOHAHA experiments, and these
spectra showed that 4 has the 6-7-6 tricyclic core as a platform.
The NOE correlations between H-12 and Me-16, and H-12 and
H-14 indicated that both H-12 and H-14 protons are oriented
in an a configuration. The 12, 13-trans stereochemistry was
assigned on the basis of the coupling constant (J,,; = 12.8 Hz).
These experiments revealed that compound 4 has the correct
stereochemistry on four contiguous carbons, C-5, C-6, C-14, and
C-13." Finally, desilylation of 4 afforded a diol, and acetylation
and subsequent elimination of the resulting acetate afforded 10
with the same configuration of functional groups as in erinacines
E, F, and G (Scheme 3).

1%

¢\ : Coupling constant /"y : NOE

Scheme 3  Reagents and conditions: 1) Sml, (20 eq.), THF--BuOH,
(100 : 1), 0 C, 2 h, 86%; m) TBAF, AcOH, THF, 67%; n) Ac,0, DBU,
CH,Cl,, 96%.

Unexpectedly, the radical cyclization with ald-enone 5a
failed under the conditions described above. The products
were inseparable mixtures of 13 and 14 (ca. 1 : 1). When
a Lewis-basic additive, HMPA, was added to increase the
reduction potential, the sole product was 14 in 76% yield. The
stereochemistry of the newly formed chiral centers at C-151in 13
and 14 was not determined (Scheme 4).

Scheme 4 Reagents and conditions: o) Sml, (20 eq.), THF--BuOH
(100: 1),0 C, 3.5 h, 76%
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The stereochemical outcomes of the 7-endo-trig radical cy-
clization of Sb might be explained as follows (Scheme 5). The
cyclization from intermediate I leads to a cis arrangement be-
tween the newly formed hydroxy group at C-14 and the hydrogen
atom at C-13. This process is preferable to approach III, which
suffers from repulsion between Me-16, H-10, and H-13. The
resulting samarium enolate is protonated stereoselectively to
afford thermodynamically more stable 4 as a single isomer.
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Scheme 5

In summary, we have succeeded in constructing the central
6-7-6 core ring system that exists in sugar-fused erinacines by an
efficient samarium-mediated radical cyclization. These synthetic
studies should constitute a firm basis for synthesis of the sugar-
fused erinacine subfamily. Further efforts toward the synthesis
of erinacine E will be reported in due course.
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